Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires
Nous poursuivons aujourd’hui les quelques réflexion sur l’autodirection et sur l’apprentissage autodirigé, que nous avions entamé avec un billet sur l’autorégulation il y a une semaine.
Jézégou (2009, 2011) s’est penchée sur l’utilisation du concept d’autodirection dans le cadre des recherches sur la formation à distance. L’auteur souligne qu’il est nécessaire de prendre garde à ne pas confondre l’apprentissage autodirigé à l’autodirection de l’apprenant, au risque de le réduire à sa seule dimension psychologique. L’autodirection est fonction des caractéristiques du dispositif dans lequel elle s’exerce (Spear & Mocker, 1984). Long (…)
Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
Modélisation prédictive
Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)
Cher ami lecteur, je m’intéresse ces temps-ci (dans le cadre de mon post-doctorat) à la question de la démarche scientifique et des outils utilisés dans le cadre de son enseignement. Pour cette raison, je me suis penché sur la question des « cahiers de laboratoire électroniques » et de leur applications pédagogiques. Comme d’habitude, un petit état de l’art sur les solutions existantes et sur leurs utilisations s’est imposé, état de l’art que je me propose de partager ici. Soulignons qu’il est loin d’être exhaustif, et qu’il ne correspond qu’à quelques jours de recherche. (Et comme souvent, je me nounoie un peu après, c’est l’écriture (…)
Je fais régulièrement le lien entre le suivi d’un MOOC et ce que l’on nomme les projets d’apprentissage, un vieux concept, puisqu’il est proposé dès 1971 par Allen Tough. Néanmoins, il me faut souligner que les éventuels projets d’apprentissage correspondant aux MOOC se distinguent à bien des égards de ceux que décrit Tough dans ses travaux séminaux. Quelques mots sur la question …
Pour l’auteur, un projet d’apprentissage dure en moyenne une centaine d’heures et mobilise en moyenne une dizaine de personnes-ressources. Or les MOOC de FUN ne nécessitent qu’une vingtaine d’heures en moyenne si l’on se base les estimations fournies par les (…)
un article repris du blog de Mathieu Cisel
J’ai parlé il y a quelques mois dans le blog Educpros des différences qui existaient entre formes d’attrition, et notamment de celle qui distingue le retrait volontaire, le participant se retire de la formation suite à une décision positive, et l’échec académique, où il se rate méchamment. Sauf que voilà, si vous voulez appliquer de tels concepts dans les MOOC, vous êtes obligés de faire un petit travail de définition opératoire. Dans le billet d’aujourd’hui, je vous propose la définition opératoire de ces deux concepts. Vous allez comprendre en lisant ce billet pourquoi il peut être complexe (…)
Je vous propose aujourd’hui un nouvel extrait de l’article publié dans Education et Formation sur les MOOC et les projets d’apprentissage. Cette fois-ci, l’extrait provient de la discussion de l’article, discussion dans laquelle je parle de l’origine des projets, mais aussi de l’influence des plates-formes de MOOC sur les projets d’apprentissage en général.
Commençons par la question de la dichotomie que nous avons établie entre les projets qui sont ont pris forme suite à la découverte du cours sur France Université Numérique (la plate-forme française de référence), et ceux qui lui préexistaient. Comment expliquer qu’un nombre si élevé (…)
Un articlerepris de Blog de Mathieu Cisel, publié le 14 juin 2016, un blog sous licence CC by sa
Bonjour cher lecteur, peut-être as-tu déjà entendu parler de learning analytics et de traces d’activité. Mais en as-tu déjà vraiment vu, en vrai. Je te propose dans ce billet de regarder à quoi ressemblaient les données de Coursera (avant qu’ils arrêtent de les partager avec leurs partenaires), rapidement et sans détour, et je conclue sur quelques problématiques qui se posent quand on fais de la recherche sur ces traces d’activité.
Sur demande des établissements partenaires, la plate-forme Coursera envoie, en sus des logs bruts, un fichier (…)
Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
Modélisation prédictive
Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)
Au cours des derniers billets, nous nous sommes penchés sur les axes de description des méthodes mixtes, et avons repris la typologie en six types de démarches proposée par Creswell et al. (2003), que nous avons illustrée avec des exemples issus du champ éducatif. Nous aimerions conclure cette série d’articles sur la question des critères de validité des méthodes mixtes. Le terme validité ne désigne pas uniquement les mesures quantitatives. Il se réfère au fait qu’une investigation, « dans ses différentes composantes, dans les conclusions qui en sont tirées, dans les applications qui en découlent, peut être de bonne ou de mauvaise (…)