Erreur d’exécution plugins/auto/zpip-dist-fix_adaptv1_spip42/inclure/head.html
Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16336 visites 1 commentaire
  • Les taux de certification des MOOC en question

    Au cours du dernier billet, je vous ai présenté la thématique de ma thèse : les taux de certification. J’aimerais maintenant vous présenter quelques-unes de mes questions de recherche, qui font écho à un article de Daphné Koller. Alors que le débat sur les taux de certification des MOOC bat son plein, la fondatrice de la plate-forme américaine Coursera publie en 2013 dans la revue Educause un réquisitoire sur la « rétention » dans les MOOC qui fera date (Koller et al., 2013).
    16 juin 2016 par Matthieu Cisel Veille 1138 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 866 visites 0 commentaire
  • Quand l’on picore dans un MOOC : retour sur la question de l’échantillonnage

    Vous vous en doutiez sûrement un petit peu, mais ce n’est pas parce que l’on obtient le certificat d’un MOOC que l’on a réalisé toutes les tâches prescrites, c’est ce que je nomme l’échantillonnage. A défaut de vous présenter des résultats chiffrés (il faudra attendre la publication des mes articles pour cela), je vous propose de réfléchir au moins aujourd’hui à quelques interprétations de la chose.
    Alors que la question de la catégorisation des non-certifiés sur la base de leurs usages observables revient régulièrement dans les rapports et les articles scientifiques, celle de l’échantillonnage reste quant à elle largement sous-investie (…)

    9 février 2017 par Matthieu Cisel Numérique pédagogique 1412 visites 0 commentaire
  • Méthodes mixtes en éducation : stratégies concomitantes et transformatives

    Ce billet fait partie d’une série d’articles sur les méthodes mixtes en éducation. La lecture des articles précédents est nécessaire pour comprendre le billet du jour, consacré aux stratégies concomitantes et transformatives, deux formes de méthodes mixtes.
    Stratégie concomitante avec étayage réciproque
    Dans le design concomitant avec étayage réciproque (concurrent with triangulation, pour les anglo-saxons), l’objectif est de confirmer, de corroborer, de réaliser une validation croisée des résultats obtenus au sein d’une même étude. Nous avons préféré le terme étayage réciproque comme traduction du terme triangulation. Les données (…)

    10 janvier 2017 par Matthieu Cisel Veille 904 visites 0 commentaire
  • MOOC : croiser questionnaires et traces d’activité – le Classico de la recherche

    Dans le dernier billet, nous avons entamé une première revue de littérature sur la question des MOOC, portant tant sur les traces d’activité que sur les revues de littérature. Aujourd’hui, je vous propose de revenir sur quelques publications où les chercheurs croisent données de questionnaires et traces d’activité.
    S’est développée depuis quelques années une littérature focalisée plus ou moins exclusivement sur l’analyse des enquêtes diffusées auprès des participants de MOOC, et fournissant des résultats intéressants au regard des motivations pour s’inscrire ou de la composition sociodémographique des audiences. Cette littérature (…)

    15 juillet 2016 par Matthieu Cisel Veille 453 visites 0 commentaire
  • Recherches en éducation : l’épineuse question de la validité dans les méthodes mixtes

    Au cours des derniers billets, nous nous sommes penchés sur les axes de description des méthodes mixtes, et avons repris la typologie en six types de démarches proposée par Creswell et al. (2003), que nous avons illustrée avec des exemples issus du champ éducatif. Nous aimerions conclure cette série d’articles sur la question des critères de validité des méthodes mixtes. Le terme validité ne désigne pas uniquement les mesures quantitatives. Il se réfère au fait qu’une investigation, « dans ses différentes composantes, dans les conclusions qui en sont tirées, dans les applications qui en découlent, peut être de bonne ou de mauvaise (…)

    16 janvier 2017 par Matthieu Cisel Veille 200 visites 0 commentaire
  • Quatre axes pour distinguer les méthodes mixtes

    Dans la continuité du dernier billet, je vous propose de continuer notre réflexion sur les méthodes mixtes en nous attardant sur une typologie proposée par Creswell, un des auteurs les plus prolixes en la matière.
    Creswell et al. (2003) proposent quatre axes pour discriminer les différentes approches. Le premier est la séquentialité (Timing) ; il s’agit ici de déterminer l’ordre dans lequel seront récoltées données qualitatives et quantitatives, et le cas échéant, si elles seront collectées de manière concomitante. Le second est le poids respectif (Weighing) de la démarche quantitative et de la démarche qualitative. Il s’agit de (…)

    5 janvier 2017 par Matthieu Cisel Veille 2076 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 278 visites 0 commentaire
  • Modélisation prédictive et découverte de structure, deux classiques de la recherche en Educational Data Mining

    Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Modélisation prédictive
    Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)

    16 janvier 2017 par Matthieu Cisel Veille 596 visites 0 commentaire

0 | 10 | 20 | 30 | 40 | 50