Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16248 visites 1 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 857 visites 0 commentaire
  • Modélisation prédictive et découverte de structure, deux classiques de la recherche en Educational Data Mining

    Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Modélisation prédictive
    Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)

    16 janvier 2017 par Matthieu Cisel Veille 592 visites 0 commentaire
  • Analyse de traces d’interaction et reconceptualisation des indicateurs de performance de MOOC : une revue de littérature

    L’utilisation débridée d’indicateurs pour mesurer la performance de cours en ligne nuit potentiellement à la compréhension des phénomènes qu’ils prétendent mesurer. En nous focalisant sur les MOOC, nous illustrons trois types de travaux qui permettent de renouveler le regard sur ces métriques à partir d’analyses de traces d’interaction. Le premier consiste à questionner la terminologie mobilisée. Il convient d’identifier le phénomène que l’on évoque lorsque l’on parle de nombre d’étudiants, d’inscrits, ou de certificats délivrés. Par exemple, les inscriptions sont souvent faites par « rafales » et correspondent à des cours qui se (…)

  • MOOC : croiser questionnaires et traces d’activité – le Classico de la recherche

    Dans le dernier billet, nous avons entamé une première revue de littérature sur la question des MOOC, portant tant sur les traces d’activité que sur les revues de littérature. Aujourd’hui, je vous propose de revenir sur quelques publications où les chercheurs croisent données de questionnaires et traces d’activité.
    S’est développée depuis quelques années une littérature focalisée plus ou moins exclusivement sur l’analyse des enquêtes diffusées auprès des participants de MOOC, et fournissant des résultats intéressants au regard des motivations pour s’inscrire ou de la composition sociodémographique des audiences. Cette littérature (…)

    30 août 2016 par Matthieu Cisel MOOC 446 visites 0 commentaire
  • Méthodes mixtes en éducation : stratégies concomitantes et transformatives

    Ce billet fait partie d’une série d’articles sur les méthodes mixtes en éducation. La lecture des articles précédents est nécessaire pour comprendre le billet du jour, consacré aux stratégies concomitantes et transformatives, deux formes de méthodes mixtes.
    Stratégie concomitante avec étayage réciproque
    Dans le design concomitant avec étayage réciproque (concurrent with triangulation, pour les anglo-saxons), l’objectif est de confirmer, de corroborer, de réaliser une validation croisée des résultats obtenus au sein d’une même étude. Nous avons préféré le terme étayage réciproque comme traduction du terme triangulation. Les données (…)

    16 janvier 2017 par Matthieu Cisel Veille 157 visites 0 commentaire
  • Quelques mots sur l’apprentissage autodirigé et sur l’autodirection

    Nous poursuivons aujourd’hui les quelques réflexion sur l’autodirection et sur l’apprentissage autodirigé, que nous avions entamé avec un billet sur l’autorégulation il y a une semaine.
    Jézégou (2009, 2011) s’est penchée sur l’utilisation du concept d’autodirection dans le cadre des recherches sur la formation à distance. L’auteur souligne qu’il est nécessaire de prendre garde à ne pas confondre l’apprentissage autodirigé à l’autodirection de l’apprenant, au risque de le réduire à sa seule dimension psychologique. L’autodirection est fonction des caractéristiques du dispositif dans lequel elle s’exerce (Spear & Mocker, 1984). Long (…)

    28 janvier 2017 par Matthieu Cisel Numériques pédagogiques 1719 visites 0 commentaire
  • Manifeste pour un catalogue d’analyses (pour les learning analytics)

    Aujourd’hui, je souhaiterais suggérer des pistes relatives au travail de vulgarisation des méthodes d’analyse de données éducatives, dont j’ai donné l’esprit au cours des billets précédents. On va notamment parler d’une idée qui me trotte dans la tête depuis longtemps, un catalogue d’analyses pour les traces d’interaction (ou learning analytics), dans lequel un analyste pourrait venir piocher à loisir des idées.
    La première pourrait consister à poursuivre le travail de construction de typologies effectuées en subdivisant certaines des catégories proposées jusqu’à présent, et en créant davantage de catégories spécifiques du champ (…)

    17 janvier 2017 par Matthieu Cisel Veille 132 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 270 visites 0 commentaire
  • Apprendre une langue sur le web : la révolution de l’IA se fait attendre

    Des établissements du supérieur aux pure players de l’IA, l’apprentissage des langues en ligne attire de nombreux acteurs. Shutterstock
    Matthieu Cisel, chercheur spécialisé dans les apprentissages en ligne, et Aurélie Djavadi, cheffe de rubrique Éducation, sont les invités de l’émission 7 milliards de voisins diffusée sur RFI ce vendredi 17 janvier, de 11h à 12h.
    De Duolingo à Babbel, en passant par Busuu ou Qioz, on ne compte plus les applications permettant d’apprendre des langues sur Internet, chez soi, sur son ordinateur, ou sur son portable, entre deux stations de métro. Avec l’enseignement de la programmation, c’est sans doute (…)

0 | 10 | 20 | 30 | 40 | 50