Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Analyse de traces d’interaction et reconceptualisation des indicateurs de performance de MOOC : une revue de littérature

    L’utilisation débridée d’indicateurs pour mesurer la performance de cours en ligne nuit potentiellement à la compréhension des phénomènes qu’ils prétendent mesurer. En nous focalisant sur les MOOC, nous illustrons trois types de travaux qui permettent de renouveler le regard sur ces métriques à partir d’analyses de traces d’interaction. Le premier consiste à questionner la terminologie mobilisée. Il convient d’identifier le phénomène que l’on évoque lorsque l’on parle de nombre d’étudiants, d’inscrits, ou de certificats délivrés. Par exemple, les inscriptions sont souvent faites par « rafales » et correspondent à des cours qui se (…)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16250 visites 1 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 860 visites 0 commentaire
  • La visibilité des mémoires déposés sur DUMAS : une question de discipline

    S’ils ne sont généralement pas considérés comme des écrits scientifiques de premier plan, les mémoires de Master de bonne qualité peuvent néanmoins se révéler utiles à la recherche, notamment car ils traitent souvent de sujets d’actualité et peuvent ce faisant accélérer le travail de chercheurs plus confirmés. Encore faut-il qu’il existe des leviers de motivations susceptibles d’inciter les étudiants à mettre à disposition leur travail. Nous nous proposons ici d’explorer au prisme de la théorie de l’échange social l’un des mécanismes qui poussent les étudiant.es à mettre en ligne leur mémoire dans des archives dédiées : la visibilité du (…)

  • Recherches sur les technologies éducatives et usage des méthodes mixtes

    Dans le cadre d’une ANR, l’ANR Hubble, je me suis intéressé à deux questions relatives à la classification des démarches de recherche dans le champ de la fouille de données issues d’Environnements Informatiques pour l’Apprentissage Humain (EIAH), que nous nommerons traces d’interaction. L’objectif qui sous-tend cette démarche est avant tout de contribuer à l’établissement d’un vocabulaire commun au sein d’une communauté de recherche sur les EIAH caractérisée par sa pluridisciplinarité. La première classification est celle des méthodes mixtes (Creswell, 2009) dans le champ des recherches en éducation, celles-ci étant définies par l’usage (…)

    3 janvier 2017 par Matthieu Cisel Veille 383 visites 0 commentaire
  • Quelques mots sur l’apprentissage autodirigé et sur l’autodirection

    Nous poursuivons aujourd’hui les quelques réflexion sur l’autodirection et sur l’apprentissage autodirigé, que nous avions entamé avec un billet sur l’autorégulation il y a une semaine.
    Jézégou (2009, 2011) s’est penchée sur l’utilisation du concept d’autodirection dans le cadre des recherches sur la formation à distance. L’auteur souligne qu’il est nécessaire de prendre garde à ne pas confondre l’apprentissage autodirigé à l’autodirection de l’apprenant, au risque de le réduire à sa seule dimension psychologique. L’autodirection est fonction des caractéristiques du dispositif dans lequel elle s’exerce (Spear & Mocker, 1984). Long (…)

    28 janvier 2017 par Matthieu Cisel Numériques pédagogiques 1720 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 272 visites 0 commentaire
  • Quand l’on picore dans un MOOC : retour sur la question de l’échantillonnage

    Vous vous en doutiez sûrement un petit peu, mais ce n’est pas parce que l’on obtient le certificat d’un MOOC que l’on a réalisé toutes les tâches prescrites, c’est ce que je nomme l’échantillonnage. A défaut de vous présenter des résultats chiffrés (il faudra attendre la publication des mes articles pour cela), je vous propose de réfléchir au moins aujourd’hui à quelques interprétations de la chose.
    Alors que la question de la catégorisation des non-certifiés sur la base de leurs usages observables revient régulièrement dans les rapports et les articles scientifiques, celle de l’échantillonnage reste quant à elle largement sous-investie (…)

    9 février 2017 par Matthieu Cisel Numérique pédagogique 1406 visites 0 commentaire
  • MOOC et interaction entre apprenants : une petite revue de littérature

    Comme vous l’avez constaté, je suis ces jours-ci dans une logique de valorisation d’articles publiés récemment. C’est que j’ai envie qu’ils soient lus, bon sang. Je me suis décarcassé pour les écrire, ce n’est pas pour qu’ils profitent à deux pelés et trois tondus. Ces derniers jours, je vous ai fait part de mes articles dans Education et Formation ; j’aimerais aujourd’hui revenir sur un article publié dans Distances et Médiations des Savoirs, centré quant à lui sur les interactions entre utilisateurs de MOOC. Le billet d’aujourd’hui présente une petite littérature sur le sujet, qui est bien loin d’être exhaustive, car je ne l’ai pas mise (…)

    7 février 2018 par Matthieu Cisel Veille 787 visites 0 commentaire
  • Une interview avec Rémi Bachelet, concepteur du MOOC Gestion de Projet

    Un article repris du site "La révolution MOOC" de Mathieu Cisel
    Tout le monde connaît le MOOC Gestion de Projet, un des cours pionniers en France. J’étais dans l’équipe de la première itération, donc l’histoire je la connais bien, mais j’imagine que ce n’est pas le cas de tout le monde. Et vu que j’ai fait une interview de son fondateur Rémi Bachelet il y a quelques années, je me suis dit que c’était l’occasion de revenir un peu sur l’histoire de cette formation étonnante qui s’est désormais intégrée dans des dizaines d’établissements universitaires de France et de Navarre (et c’est sans compter les entreprises, qui utilisent aussi la (…)

    27 octobre 2017 par Matthieu Cisel MOOC 3713 visites 0 commentaire

0 | 10 | 20 | 30 | 40 | 50