Erreur d’exécution plugins/auto/zpip-dist-fix_adaptv1_spip42/inclure/head.html
Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16341 visites 1 commentaire
  • Quand l’on picore dans un MOOC : retour sur la question de l’échantillonnage

    Vous vous en doutiez sûrement un petit peu, mais ce n’est pas parce que l’on obtient le certificat d’un MOOC que l’on a réalisé toutes les tâches prescrites, c’est ce que je nomme l’échantillonnage. A défaut de vous présenter des résultats chiffrés (il faudra attendre la publication des mes articles pour cela), je vous propose de réfléchir au moins aujourd’hui à quelques interprétations de la chose.
    Alors que la question de la catégorisation des non-certifiés sur la base de leurs usages observables revient régulièrement dans les rapports et les articles scientifiques, celle de l’échantillonnage reste quant à elle largement sous-investie (…)

    9 février 2017 par Matthieu Cisel Numérique pédagogique 1415 visites 0 commentaire
  • Les taux de certification des MOOC en question

    Au cours du dernier billet, je vous ai présenté la thématique de ma thèse : les taux de certification. J’aimerais maintenant vous présenter quelques-unes de mes questions de recherche, qui font écho à un article de Daphné Koller. Alors que le débat sur les taux de certification des MOOC bat son plein, la fondatrice de la plate-forme américaine Coursera publie en 2013 dans la revue Educause un réquisitoire sur la « rétention » dans les MOOC qui fera date (Koller et al., 2013).
    16 juin 2016 par Matthieu Cisel Veille 1141 visites 0 commentaire
  • Quatre axes pour distinguer les méthodes mixtes

    Dans la continuité du dernier billet, je vous propose de continuer notre réflexion sur les méthodes mixtes en nous attardant sur une typologie proposée par Creswell, un des auteurs les plus prolixes en la matière.
    Creswell et al. (2003) proposent quatre axes pour discriminer les différentes approches. Le premier est la séquentialité (Timing) ; il s’agit ici de déterminer l’ordre dans lequel seront récoltées données qualitatives et quantitatives, et le cas échéant, si elles seront collectées de manière concomitante. Le second est le poids respectif (Weighing) de la démarche quantitative et de la démarche qualitative. Il s’agit de (…)

    5 janvier 2017 par Matthieu Cisel Veille 2078 visites 0 commentaire
  • Manifeste pour un catalogue d’analyses (pour les learning analytics)

    Aujourd’hui, je souhaiterais suggérer des pistes relatives au travail de vulgarisation des méthodes d’analyse de données éducatives, dont j’ai donné l’esprit au cours des billets précédents. On va notamment parler d’une idée qui me trotte dans la tête depuis longtemps, un catalogue d’analyses pour les traces d’interaction (ou learning analytics), dans lequel un analyste pourrait venir piocher à loisir des idées.
    La première pourrait consister à poursuivre le travail de construction de typologies effectuées en subdivisant certaines des catégories proposées jusqu’à présent, et en créant davantage de catégories spécifiques du champ (…)

    16 janvier 2017 par Matthieu Cisel Veille 109 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 278 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 429 visites 0 commentaire
  • Traces d’interaction et types d’analyses de données quantitatives

    J’inaugure aujourd’hui une série d’articles au cours desquels je me propose de revenir sur la diversité des types d’analyses quantitatives menées sur les traces d’interaction, en nous inscrivant dans la démarche de classification que nous avons suivie pour les méthodes mixtes. Nous emploierons le terme forme d’analyse pour désigner les différents types d’analyses quantitatives étudiées ici. Il est possible de classifier les formes d’analyse selon plusieurs axes, le premier étant celui de l’objectif sous-jacent, le second étant la nature de l’analyse réalisée. Les travaux réalisés dans le champ de l’Educational Data Mining peuvent avoir (…)

    12 janvier 2017 par Matthieu Cisel Veille 740 visites 0 commentaire
  • Modélisation prédictive et découverte de structure, deux classiques de la recherche en Educational Data Mining

    Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Modélisation prédictive
    Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)

    16 janvier 2017 par Matthieu Cisel Veille 597 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 867 visites 0 commentaire

0 | 10 | 20 | 30 | 40 | 50