Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16381 visites 1 commentaire
  • La visibilité des mémoires déposés sur DUMAS : une question de discipline

    S’ils ne sont généralement pas considérés comme des écrits scientifiques de premier plan, les mémoires de Master de bonne qualité peuvent néanmoins se révéler utiles à la recherche, notamment car ils traitent souvent de sujets d’actualité et peuvent ce faisant accélérer le travail de chercheurs plus confirmés. Encore faut-il qu’il existe des leviers de motivations susceptibles d’inciter les étudiants à mettre à disposition leur travail. Nous nous proposons ici d’explorer au prisme de la théorie de l’échange social l’un des mécanismes qui poussent les étudiant.es à mettre en ligne leur mémoire dans des archives dédiées : la visibilité du (…)

  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 281 visites 0 commentaire
  • Comment mes questionnaires sur les MOOC ont évolué au fil du temps

    Un articlerepris du blog de Mathieu Cisel et publié le 14 juin
    Je trouve que l’on ne prend pas suffisamment en considération la façon dont les instruments de la recherche se construisent au fil du temps, quelles sont les influences qui se mettent en place, tout ça tout ça. Du coup, pour donner à voir ce qui se passe véritablement dans la tête d’un chercheur, je vous propose de décrire la démarche de construction de mes questionnaires adressés aux utilisateurs de MOOC, des questionnaires qui ont sensiblement évolué au fil des années. De vous à moi, si vous n’êtes pas chercheur, ce billet ne va probablement pas vous intéresser.
    La mise (…)

    15 novembre 2016 par Matthieu Cisel MOOC 4834 visites 0 commentaire
  • Un post-doctorat avec les Savanturiers, consacré à la conception d’EIAH

    Chers lecteurs, je parle souvent de MOOC dans ce blog, réminiscences d’un doctorat sur la question. Mais comme vous le savez peut-être, je fais mon post-doctorat sur la conception d’un EIAH (Environnement Informatique pour l’Apprentissage Humain). Quelques mots sur ce projet …
    Dans le cadre d’un projet eFRAN lancé en 2016, Savanturiers du Numérique, les Savanturiers pilotent un consortium rassemblant deux laboratoires de recherche, deux académies et un industriel, Tralalère. Un des objectifs de ce consortium est de développer une application visant à instrumenter les projets Savanturiers. La première année du projet permet un travail (…)

    4 mai 2018 par Matthieu Cisel Veille 262 visites 0 commentaire
  • Apprendre une langue sur le web : la révolution de l’IA se fait attendre

    Des établissements du supérieur aux pure players de l’IA, l’apprentissage des langues en ligne attire de nombreux acteurs. Shutterstock
    Matthieu Cisel, chercheur spécialisé dans les apprentissages en ligne, et Aurélie Djavadi, cheffe de rubrique Éducation, sont les invités de l’émission 7 milliards de voisins diffusée sur RFI ce vendredi 17 janvier, de 11h à 12h.
    De Duolingo à Babbel, en passant par Busuu ou Qioz, on ne compte plus les applications permettant d’apprendre des langues sur Internet, chez soi, sur son ordinateur, ou sur son portable, entre deux stations de métro. Avec l’enseignement de la programmation, c’est sans doute (…)

  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 867 visites 0 commentaire
  • Modélisation prédictive et découverte de structure, deux classiques de la recherche en Educational Data Mining

    Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Modélisation prédictive
    Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)

    26 janvier 2017 par Matthieu Cisel Veille 586 visites 0 commentaire
  • Les plates-formes de MOOC et assimilées : futures chaperonnes de l’apprentissage en ligne ?

    Je vous propose aujourd’hui un nouvel extrait de l’article publié dans Education et Formation sur les MOOC et les projets d’apprentissage. Cette fois-ci, l’extrait provient de la discussion de l’article, discussion dans laquelle je parle de l’origine des projets, mais aussi de l’influence des plates-formes de MOOC sur les projets d’apprentissage en général.
    Commençons par la question de la dichotomie que nous avons établie entre les projets qui sont ont pris forme suite à la découverte du cours sur France Université Numérique (la plate-forme française de référence), et ceux qui lui préexistaient. Comment expliquer qu’un nombre si élevé (…)

    6 février 2018 par Matthieu Cisel Veille 126 visites 0 commentaire
  • Cahiers de laboratoire électroniques : un outil pour l’enseignement des sciences

    Cher ami lecteur, je m’intéresse ces temps-ci (dans le cadre de mon post-doctorat) à la question de la démarche scientifique et des outils utilisés dans le cadre de son enseignement. Pour cette raison, je me suis penché sur la question des « cahiers de laboratoire électroniques » et de leur applications pédagogiques. Comme d’habitude, un petit état de l’art sur les solutions existantes et sur leurs utilisations s’est imposé, état de l’art que je me propose de partager ici. Soulignons qu’il est loin d’être exhaustif, et qu’il ne correspond qu’à quelques jours de recherche. (Et comme souvent, je me nounoie un peu après, c’est l’écriture (…)

    16 mai 2016 par Matthieu Cisel Veille 350 visites 0 commentaire

0 | 10 | 20 | 30 | 40 | 50