Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Matthieu Cisel

Articles de cet auteur (54)

  • Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne

    Cet article Un peu de psychologie de la motivation pour comprendre l’apprentissage en ligne est est repris duBlog de Matthieu Cisel.
    Aujourd’hui, je vous propose de revenir brièvement sur la théorie des buts d’accomplissement, une théorie de psychologie de la motivation que je trouve super pour comprendre l’apprentissage en ligne, et en particulier pour interpréter ce qui se passe dans un MOOC. Aujourd’hui, je vous propose de revenir sur cette théorie et sa terminologie. Bref, une théorie à diffuser, et qui m’a personnellement énormément plu, même si au final je ne l’ai pas utilisée dans le cadre de mon doctorat. Et je conclue sur un (…)

    16 octobre 2016 par Matthieu Cisel MOOC 16447 visites 1 commentaire
  • Les traces d’activité de MOOC, ça ressemble à ça

    Un articlerepris de Blog de Mathieu Cisel, publié le 14 juin 2016, un blog sous licence CC by sa
    Bonjour cher lecteur, peut-être as-tu déjà entendu parler de learning analytics et de traces d’activité. Mais en as-tu déjà vraiment vu, en vrai. Je te propose dans ce billet de regarder à quoi ressemblaient les données de Coursera (avant qu’ils arrêtent de les partager avec leurs partenaires), rapidement et sans détour, et je conclue sur quelques problématiques qui se posent quand on fais de la recherche sur ces traces d’activité.
    Sur demande des établissements partenaires, la plate-forme Coursera envoie, en sus des logs bruts, un fichier (…)

    4 novembre 2016 par Matthieu Cisel MOOC 1440 visites 0 commentaire
  • Stratégies d’analyse et fouille de données éducatives : le Relationship Mining

    Dans le cas du Relationship mining, l’objectif est de découvrir des relations entre variables dans un jeu de données qui en comprend un nombre important. Cela peut conduire à chercher à identifier les variables qui sont le plus fortement associées avec une variable d’intérêt, ou à établir parmi l’ensemble de paires de variables celles dont la relation est la plus forte. Il existe grossièrement quatre types de Relationship mining : l’association rule mining, le correlation mining, le sequential pattern mining, le causal data mining. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data (…)

    16 janvier 2017 par Matthieu Cisel Veille 435 visites 0 commentaire
  • Modélisation prédictive et découverte de structure, deux classiques de la recherche en Educational Data Mining

    Le billet d’aujourd’hui est consacré à deux approches utilisées en EDM lors d’analyses quantitatives : la modélisation prédictive d’une part, et la découverte de structure d’autre part. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Modélisation prédictive
    Dans le cas de la modélisation prédictive (predictive modeling), l’objectif est de développer un modèle qui infère sur un aspect particulier des données, comme une variable dite « dépendante », à partir (…)

    26 janvier 2017 par Matthieu Cisel Veille 588 visites 0 commentaire
  • Pourquoi analyser le MOOC comme un projet d’apprentissage ?

    Aujourd’hui, je vous propose un extrait de l’article que j’ai publié dans la revue belge Education et Formation, sur le MOOC, vu comme un projet d’apprentissage. Je propose de revenir dans cet article sur les raisons qui m’ont poussé à analyser les MOOC en ces termes. A force de lire d’une part la littérature sur la formation à distance, et d’autre part celle sur les MOOC, j’ai réalisé qu’il fallait sans doute changer de perspective pour se distinguer significativement de recherches vieilles de plusieurs décennies.
    Les similitudes sont frappantes entre, d’une part, les travaux qui furent consacrés dès l’immédiat après-guerre (Edwards, (…)

    6 février 2018 par Matthieu Cisel Veille 727 visites 0 commentaire
  • Méthodes mixtes en éducation : stratégies concomitantes et transformatives

    Ce billet fait partie d’une série d’articles sur les méthodes mixtes en éducation. La lecture des articles précédents est nécessaire pour comprendre le billet du jour, consacré aux stratégies concomitantes et transformatives, deux formes de méthodes mixtes.
    Stratégie concomitante avec étayage réciproque
    Dans le design concomitant avec étayage réciproque (concurrent with triangulation, pour les anglo-saxons), l’objectif est de confirmer, de corroborer, de réaliser une validation croisée des résultats obtenus au sein d’une même étude. Nous avons préféré le terme étayage réciproque comme traduction du terme triangulation. Les données (…)

    10 janvier 2017 par Matthieu Cisel Veille 917 visites 0 commentaire
  • Points de vue d’apprenants sur les interactions dans les MOOC : suite

    Nous continuons aujourd’hui notre réflexion sur les points de vue de participants quant aux interactions qui se déroulent sur les forums. Aujourd’hui, j’aimerais vous présenter quelques autres raisons pour lesquelles il ne faut pas négliger ces interactions.
    Cet article Points de vue d’apprenants sur les interactions dans les MOOC : suite est apparu en premier sur Blog de Matthieu Cisel.
    L’une des premières raisons est que nombre de participants considèrent que le MOOC est justement une façon de rompre par rapport à l’isolement, comme cette doctorante en biologie.
    J’ai toujours été une personne très curieuse. Je suis de nature un (…)

    16 août 2017 par Matthieu Cisel MOOC 4120 visites 1 commentaire
  • Quatre axes pour distinguer les méthodes mixtes

    Dans la continuité du dernier billet, je vous propose de continuer notre réflexion sur les méthodes mixtes en nous attardant sur une typologie proposée par Creswell, un des auteurs les plus prolixes en la matière.
    Creswell et al. (2003) proposent quatre axes pour discriminer les différentes approches. Le premier est la séquentialité (Timing) ; il s’agit ici de déterminer l’ordre dans lequel seront récoltées données qualitatives et quantitatives, et le cas échéant, si elles seront collectées de manière concomitante. Le second est le poids respectif (Weighing) de la démarche quantitative et de la démarche qualitative. Il s’agit de (…)

    5 janvier 2017 par Matthieu Cisel Veille 2089 visites 0 commentaire
  • La visibilité des mémoires déposés sur DUMAS : une question de discipline

    S’ils ne sont généralement pas considérés comme des écrits scientifiques de premier plan, les mémoires de Master de bonne qualité peuvent néanmoins se révéler utiles à la recherche, notamment car ils traitent souvent de sujets d’actualité et peuvent ce faisant accélérer le travail de chercheurs plus confirmés. Encore faut-il qu’il existe des leviers de motivations susceptibles d’inciter les étudiants à mettre à disposition leur travail. Nous nous proposons ici d’explorer au prisme de la théorie de l’échange social l’un des mécanismes qui poussent les étudiant.es à mettre en ligne leur mémoire dans des archives dédiées : la visibilité du (…)

  • Stratégies d’analyse et fouille de données éducatives : des modèles pour guider le travail de fouille

    Je vous propose aujourd’hui de nous attarder sur deux éléments : la « distillation de données pour le jugement humain », et la fouille médiée par des modèles. Cet article s’inscrit dans une série de billets consacrés aux techniques d’analyse en Educational Data Mining (fouille de données éducatives). La lecture des articles précédents est nécessaire pour mieux comprendre la démarche.
    Data distillation for Human Judgement
    Dans certains cas, les humains peuvent faire des inférences à propos des données, lorsqu’elles sont présentées de manière appropriée, qui vont au-delà de méthodes de fouilles de données automatisées. Les méthodes de (…)

    16 janvier 2017 par Matthieu Cisel Veille 283 visites 0 commentaire

0 | 10 | 20 | 30 | 40 | 50